segunda-feira, 17 de novembro de 2008
Geometria molecular da água
Geometria molecular é o estudo de como os átomos estão distribuidos espacialmente em uma molécula. Esta pode assumir várias formas geométricas, dependendo dos átomos que a compõem. As principais classificações são linear, angular, trigonal plana, piramidal e tetraédrica.
Para se determinar a geometria de uma molécula, é preciso conhecer a teoria da repulsão dos pares eletrónicos da camada de valência.
Teoria da repulsão dos pares eletrônicos
Baseia-se na idéia de que pares eletrônicos da camada de valência de um átomo central, estejam fazendo Ligação química ou não, se comportam como nuvens eletrónicas que se repelem, ficando com a maior distância angular possível uns dos outros. Uma nuvem eletrónica pode ser representada por uma ligação simples, dupla, tripla ou mesmo por um par de eletrons que não estão a fazer ligação química. Essa teoria funciona bem para moléculas do tipo ABx, em que A é o átomo central e B é chamado elemento ligante. De acordo com essa teoria, os pares de elétrons da camada de valência do átomo central (A) se repelem, produzindo o formato da molécula ou íon.
Assim, se houver 2 nuvens eletrônicas ao redor de um átomo central, a maior distância angular que elas podem assumir é 180 graus. No caso de três nuvens, 120 graus etc., sendo que é de extrema importância analisar se a ligação é covalente ou iônica.
Tipos de geometria molecular
Linear: Acontece em toda molécula biatómica (que possui dois átomos) ou em toda molécula em que o átomo central possui no máximo duas nuvens eletrónicas em sua camada de valência. Exemplo: Ácido clorídrico (HCl) e gás carbônico (CO2).
Trigonal plana ou triangular: Acontece somente quando o átomo central tem três nuvens eletrónicas em sua camada de valência. Estas devem fazer ligações químicas, formando um ângulo de 120 graus entre os átomos ligados ao átomo central. Obs: caso 2 das nuvens eletrónicas for de ligações quimicas e uma de eletrões não ligantes a geometria é angular, como descrita a cima. O angulo é de 120º
Angular: Acontece quando o átomo central tem três ou quatro nuvens eletrónicas em sua camada de valência. No caso de três, duas devem estar fazendo ligações químicas e uma não, formando um ângulo de 120 graus entre os átomos ligantes. Quando há quatro nuvens, duas devem fazer ligações químicas e duas não, formando um ângulo de 104° 34' (104,45°) entre os átomos.
Tetraédrica: Acontece quando há quatro nuvens eletrónicas na camada de valência do átomo central e todas fazem ligações químicas. O átomo central assume o centro de um tetraedro regular. Ângulo de 109º 28'
Piramidal: Acontece quando há quatro nuvens eletrónicas na camada de valência do átomo central, sendo que três fazem ligações químicas e uma não. Os três átomos ligados ao átomo central não ficam no mesmo plano.O angulo é de 107°. O exemplo mais citado é o amoníaco, NH3
Bipiramidal: Acontece quando há cinco nuvens eletrónicas na camada de valência do átomo central, todas fazendo ligação química. O átomo central assume o centro de uma bipiramide trigonal, sólido formado pela união de dois tetraedros por uma face comum. Como exemplo cita-se a molécula PCl5. Os angulos entre as ligações são 120 graus e 90 graus.
Octaédrica: Acontece quando há seis nuvens eletrónicas na camada de valência do átomo central e todas fazem ligações químicas formando angulos de 90 graus e 180 graus.
Moléculas formadas por 2 átomos - Conformação Linear:
Ex1: F2:(7x2)= 14 elétrons:
F-F Geometria: Linear
Ex2: HCl:(1+7)= 8 elétrons:
H-Cl Geometria: Linear
Moléculas formadas por 3 átomos:
- Quando o átomo central NÃO possui par de elétrons livre:
Ex1: CO2: 4+(6x2)= 4+12= 16 elétrons:
O=C=O Geometria: Linear
Moléculas formadas por 4 átomos:
Quando possui um par de elétron não -ligantes:
Piramidal, exemplo:NH3
Caso ao contrário:
Trigonal Plana,exemplo:BF3
Moléculas formadas por 5 átomos:
-Quando possui um par de elétrons não ligantes: Gangorra, exemplo SF4 -Caso contrário: Tetraédrica.Exemplo:CH4
Geometria Angular
EX: É o caso da água ( H2O )
**O**
/ \
H H
Na geometria angular como dito anteriormente, caracteriza-se por 4 nuvens eletrônicas na molécula onde duas não fazem ligação química ou três nuvens e duas não ligam. São características observadas acima.
aluno: valdir marques n° 37
domingo, 16 de novembro de 2008
fogos de artificio
Final de ano, nada mais comum que passar a virada do ano vendo o show de fogos de artifício, seja ao vivo ou pela TV. Quem nunca fez isso?
Shows de fogos de artifício são muito bonitos, no entanto, o barulho nas redondezas do espetáculo é gigantesco. E isso, é devido à grande quantidade de pólvora existente em um fogo de artifício.
Um fogo de artifício é composto basicamente por pólvora (mistura de enxofre, carvão e salitre 'nitrato de potássio') e por um sal de um elemento determinado (o que irá determinar a cor da luz produzida na explosão).
A pólvora foi bastante utilizada nos últimos séculos, principalmente, no século XX, durante a 1ª e 2ª Guerra Mundial. Geralmente, a descoberta da pólvora é atribuída aos chineses, que aparentemente a fizeram por volta do ano 1000 d.C. ou seja, por volta do século XI. Foi também os chineses que inventaram os fogos de artifício. Não como eles são encontrados hoje, mas de uma forma primária.
Na Europa, como é de conhecimento de muitos, ocorreram diversas guerras, dentro e patrocinadas por seus países. Isso ajudou no desenvolvimento de técnicas de trabalho com a pólvora e até a sua melhoria. Neste continente, a pólvora chegou por volta do século XIII ou XIV, mas só no século XVIII, durante a Revolução Francesa que a sua produção foi melhorada. Antoine Laurent Lavoisier, durante esta revolução, foi nomeado como o responsável pela munição, ou seja, pela pólvora. Até então, o salitre utilizado na produção de pólvora era obtido de forma primitiva e em pequenas quantidades. Lavoisier foi quem descobriu uma maneira de sintetizar o salitre em grandes quantidades, o que possibilitou um aumento sensível na produção e utilização da pólvora.
A pólvora, em um fogo de artifício, possui, além do nitrato de potássio (KNO3), perclorato de potássio (KClO4) ou clorato de potássio (KClO3). Estes compostos são denominados oxidantes e são altamente explosivos. A presença desses sais (KClO4 e KClO3) é uma forma de aumentar a explosão e a claridade proporcionada pelo fogo de artifício. Geralmente é utilizado sais de potássio, mas não de sódio, isso é devido ao fato dos sais de sódio absorverem água da atmosfera com maior facilidade do que os sais de potássio. Esse fato é o que impossibilita a utilização de sais de sódio em fogos de artifícios, uma vez que ao serem estocados, caso fossem feitos com sais de sódio, ocorreria a absorção de água, o que atrapalharia no momento da explosão do fogo. Além da intensa luz amarela que é obtida com os sais de sódio, que ofuscaria as outras cores.
A Química das cores dos fogos de artifício
As cores produzidas em um show de fogos de artifício são produzidas a partir de dois fenômenos, a incandescência e a luminescência.
A incandescência é a luz produzida pelo aquecimento de substâncias. Quando se aquece um metal, por exemplo, ele passa a emitir radiação infravermelha, que vai se modificando até se tornar radiação visível na cor branca. Isso irá depender de qual temperatura é atingida. Um exemplo de incandescência são as lâmpadas incandescentes, onde existe um filamento de tungstênio que é aquecido e passa a produzir luz, a partir da incandescência. Este fenômeno é, também, visto nos fogos de artifício, nos quais são utilizados metais como o alumínio e magnésio, que ao queimarem produzem alta claridade.
A luminescência é a luz produzida a partir emissão de energia, na forma de luz, por um elétron excitado, que volta para o nível de energia menos energético de um átomo.
Este fenômeno, a luminescência, pode ser explicado da seguinte forma: 1) Um átomo, de um elemento químico qualquer, possui elétrons em níveis de energia. Ao receber energia, estes elétrons são excitados, ou seja, são promovidos a níveis de energia mais elevados. A quantidade de energia absorvida por um elétron é quantizada, ou melhor, é sempre em quantidades precisas, não podendo ser acumulada. 2) O elétron excitado tem a tendência de voltar para o nível menos energético, pois é mais estável. Quando ocorre esta passagem, do nível mais energético para o menos, ocorre também a liberação da energia absorvida, só que agora, na forma de um fóton, ou seja, na forma de luz.
A luminescência é uma característica de cada elemento químico. Ou seja, átomos de sódio quando aquecido, emitem luz amarela, pela luminescência. Já os átomos de estrôncio e lítio produzem luz vermelha. Os de bário produzem luz verde e assim por diante.
Os fogos de artifício utilizam deste fenômeno e desta variedade, uma vez que há fogos das mais diversas cores. No entanto, nos fogos de artifício são utilizados sais destes elementos químicos, pois o elemento puro, é muitas vezes, reativo. Na tabela a seguir, há uma relação entre as cores e os sais dos elementos químicos utilizados para a sua produção.
Sais de sódio, tais como: NaNO3, Na3AlF6 e NaCl
Sais de cobre, tais como: CuCl e Cu3As2O3Cu(C2H3O2)2
Sais de cálcio, tais como: CaCl2, CaSO4 e CaCO3
Sais de estrôncio e lítio, tais como: SrCO3 e Li2CO3
Sais de bário, tais como: Ba(NO3)2 e BaCl+
Mistura de sais de estrôncio e cobre
Alumínio e magnésio, metálicos ou sais
sexta-feira, 14 de novembro de 2008
Introdução
![]() Imagem cedida por Michael W / Stock.xchng |
Neste artigo, vamos entender o funcionamento destas incríveis lâmpadas. Também vamos conhecer um pouco da história e até ensinar você a criar sua própria lâmpada. Da próxima vez que você vir uma lâmpada, você entenderá todo o seu processo.
Dentro da lâmpada
As lâmpadas de lava são dispositivos bastante simples, baseadas em princípios científicos básicos e compostos de poucos componentes. Elas devem ter:
- um composto que forma as "bolhas" flutuantes;
- um composto em que as bolhas flutuam;
- uma lâmpada que ilumina e esquenta o vidro para que as bolhas se movam.
Para criar as bolhas flutuantes, os dois componentes na lâmpada de lava devem ser imersíveismutuamente insolúveis. Isto quer dizer que o líquido A não se dissolve no líquido B. Os dois não se misturam: você pode ver dois líquidos separados, um sobre o outro. ou
![]() Imagem cedida por Melanie Tsoi - Stock.xchng |
O clássico exemplo de compostos imersíveis são a água e o óleo. Se você preencher um vaso com óleo mineral e água, vai ver uma camada de água e uma camada de óleo sobre ela. Esta combinação de água e óleo no vaso tem um visual semelhante ao da lâmpada de lava com a luz desligada. Você pode ver as duas camadas separadas.
A coisa mais legal das lâmpadas de lava é que elas produzem bolhas com formatos variados que ficam se movimentando aleatoriamente. Para produzir este efeito, você precisa escolher os compostos cuidadosamente. No nosso frasco de óleo e água, a água fica na parte de baixo porque é muito mais densa do que o óleo. Isto quer dizer que um líquido com densidade maior empurra um líquido com densidade menor para cima (para mais informações, veja Como funcionam os balões de hélio).
Para que as bolhas flutuam, você precisa de duas substâncias com densidades semelhantes. Depois você precisa mudar a densidade de um dos componentes para que ele seja, às vezes, mais leve do que o outro componente (e flutue para o topo) e, às vezes, mais pesado (para que afunde). Como os compostos têm densidades semelhantes, as bolhas podem facilmente afundar e flutuar. Veremos como isso é possível na próxima seção.
Esquentando a lâmpada
A maneira mais comum de se mudar a densidade dos compostos é mudando a sua temperatura. O aquecimento de um composto ativa as suas moléculas, pois elas se afastam e o composto se torna menos denso. Se você já leu o artigo Como funcionam os termômetros, você sabe que aquecer a água causa a sua expansão. Quando você esfria o composto, aumenta a sua densidade.
![]() |
Se você observar o interior de uma lâmpada desligada, vai ver um composto sólido de cera na parte inferior. O composto sólido é um pouco mais denso do que o líquido. Quando você liga a luz na base da lâmpada, veja o que acontece:
- o sólido se transforma em líquido e se expande; dessa forma, ele fica menos denso do que o líquido que estava em volta;
- uma bolha quente é menos densa e, por isso, vai para a parte superior da lâmpada;
- como ele se afasta da fonte de calor, a bolha se esfria um pouco e se torna mais densa do que o líquido (mas não fica fria o suficiente para se transformar em sólido novamente);
- a bolha afunda e, ao chegar perto da fonte de calor, esquenta e sobe novamente.
Esta idéia é muito simples, mas é difícil balancear todos os elementos (os compostos, a fonte de calor e o tamanho da lâmpada) para que as bolhas se movam constantemente. Na verdade, as empresas que produzem as lâmpadas guardam seus ingredientes a sete chaves. Alguns entusiastas de lâmpadas em movimento passam muito tempo tentando reproduzir os modelos comerciais.
By: Alberto Fernando
segunda-feira, 10 de novembro de 2008
Os adesivos que brilham no escuro geralmente são feitos com sulfato de zinco. Quando o sulfato de zinco é exposto à luz, graças à sua configuração eletrônica, os elétrons das camadas mais externas absorvem a luz e são excitados para camadas etetrônicas ainda mais externas. Quando apagamos a luz deixamos de fornecer energia aos elétrons, que aos poucos vão retornando às suas camadas eletrônicas iniciais. Durante esse retorno (que pode durar horas), eles devolvem a energia que absorveram na forma de luz. Esse fenômeno se chama fosforescência. Alguns modelos de relógios têm detalhes fosforescentes que nunca perdem o brilho mesmo quando são deixados vários dias no escuro. Isso acontece porque o material fosforescente desses relógios está misturado com um pouco de material radioativo, que funciona como uma fonte de energia para provocar a fosforescência. Além da fosforescência, existe um outro fenômeno, chamado de fluorescência. Diferentemente das substâncias fosforescentes, os compostos fluorescentes deixam de emitir luz assim que são colocados no escuro. Podemos observar a fluorescência quando vamos a uma discoteca. Todo mundo que está de roupas brancas fica "brilhando" no escuro graças as lâmpadas de luz negra, que é uma lâmpada de luz ultra-violeta. Quando a luz negra é desligada, o brilho da roupa desaparece. A nossa roupa brilha sob luz negra por causa de um aditivo dos sabões em pó que usamos. Esse aditivo é usado para termos a impressão de que a roupa está "mais branca do que branca", pois ele absorve a radiação UV e emite como uma luz azulada. Outras substâncias fluorescentes que podemos encontrar são a água tônica e a urina. É por isso que não tem luz negra nos banheiros das discotecas. Quando a emissão de luz de uma substância é provocada por uma reação química ela recebe o nome de quimioluminescência.
By: Leopoldo
quinta-feira, 6 de novembro de 2008
' Chernobyl
O acidente foi devido a um teste com o objetivo de observar o funcionamento do reator da usina a baixa energia. Os técnicos encarregados não seguiram as normas de segurança e o reator acabou se superaquecendo e, em decorrência disso, explodindo.
A explosão liberou uma imensa nuvem radioativa que contaminou pessoas, animais e o meio ambiente em uma extensão de aproximadamente 200 km² de solo europeu. O número de mortos até hoje é uma incógnita. Para a ONU foram quatro mil mortos, para a organização ambientalista Greenpeace foram cerca de cem mil e um estudo científico britânico avaliou entre trinta e sessenta mil mortos. Apenas 5 trabalhadores da usina sobreviveram ao acidente, sendo que alguns estão vivos até hoje.
O acidente de Chernobyl teve 100 vezes mais radiação do que a bomba atômica de Hiroshima no Japão, após a Segunda Guerra Mundial.


' Bomba Atômica
Com isso começava a ser comprovada a teoria de Einstein, mas não se sabia como determinar o impacto de uma explosão dessa natureza. O temor que muitos tinham é de que a bomba pudesse explodir todo o planeta. Um grupo de cientistas, liderados por J. Robert Oppenheimer, conseguiram construir a bomba fissão, também conhecida por bomba atômica.
Os primeiros testes ocorreram na manhã de 16 de julho de 1945, no deserto do Novo México.
Após ter sido comprovado o poder da bomba, os americanos decidiram utiliza-la contra o Japão. O poder de destruição causado pelas bombas foi imenso, iniciando assim, a era nuclear.
Logo depois foi inventada a bomba de hidrogênio, testada em Bikini, chamada de bomba H, a qual se revelou cinco vezes mais destruidora do que todas as bombas convencionais usadas durante a Segunda Guerra Mundial.
Atualmente, o poder bélico está muito avançado, o homem está dominando as técnicas de destruição mais eficazes e precisas. O idealizador da bomba atômica, Einstein, tendo visto a tragédia provocada pela bomba, disse a seguinte frase: “Tudo havia mudado...menos o espirito humano”.
'by: Anna Kárita

Porque a água apaga o fogo? Qual é a explicação Quimica pra isto?
O fogo é uma reação química, onde um combustível une-se a um comburente, e gera calor, luz, e o resultado da reação entre combustível e comburente.
Jogar água no fogo apaga alguns incêndios, mas não todos. Normalmente, o que acontece é que a água separa o combustível do comburente, e também esfria a reação. Disto resulta que o fogo apaga. Veja que se a água apagar o fogo mas não conseguir esfriar muito, assim que toda a água evaporar, a alta temperatura fará com que o fogo reinicie expontaneamente.